Representation Theory of Finite Groups

100 Points

Notes.

(a) Begin each answer on a separate sheet.

(b) Justify all your steps. Assume only those results that have been proved in class. All other steps should be justified.

(c) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(d) Unless specifically mentioned, any group under consideration may be assumed to be finite and for representations, the underlying field may be assumed to be \mathbb{C} .

(e) The total number of points available to score is 150. You will be assigned

Minimum {100, points scored by you}.

1. [8 points] Prove that for any n > 0, $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) \cong 0$.

2. [20 points] Let V, W be irreducible *G*-modules that are <u>not</u> isomorphic to each other. Prove that the only *G*-submodules of $M := V \oplus W$, other than 0 and *M* itself, are $V \cong V \oplus 0$ and $W \cong 0 \oplus W$.

- 3. [20 points]
 - (i) Write the character table for S_3 .
 - (ii) Let V denote the standard module for S_3 . Write the character of $V^{\otimes 10}$ and use it to identify the multiplicity of each of its irreducible components.

4. [8 points] Let k be an algebraically closed field of characteristic 0. Prove that $M_2(k)$, the k-algebra of 2×2 matrices over k, is not isomorphic to the group ring of any finite group G over k.

5. [8 points] Prove or disprove: $V^{\otimes 3} \cong \text{Sym}^3 V \oplus \wedge^3 V$ for every finite-dimensional vector space V over k.

6. [18 points] Let $G = C_2 \times C_2$ be the Klein 4-group where C_2 is the cyclic group of order 2. Describe all its irreducible representations over \mathbb{C} . (This means, list them up to isomorphism; for every irreducible representation V, give its dimension and give the action of each $g \in G$ on a suitable basis of V.) 7. [8 points] Let G be a finite group such that every complex irreducible representation of G has dimension 1. Prove that G is abelian.

8. [20 points] Let G be a finite group having an abelian subgroup N of index 2. Prove that every irreducible G-module over \mathbb{C} has dimension at most 2.

9. [12 points] Let τ be the \mathbb{C} -algebra automorphism of polynomial rings $\mathbb{C}[X, Y] \to \mathbb{C}[X, Y]$ induced by the rule

$$\tau(X) = Y, \qquad \quad \tau(Y) = X$$

Then the subspace $V_d \subset \mathbb{C}[X, Y]$ of all polynomials of degree <u>at most</u> d becomes a representation for the cyclic group $C_2 = \{1, \tau\}$ via the above rule. Decompose V_2 as a direct sum of irreducible C_2 -modules.

- 10. [16 points] Let G be a finite group.
 - (i) Let r be an element in the centre of $\mathbb{C}[G]$. Verify that for any G-module W, the map $\mu_r \colon W \to W$, given by multiplication by r, is G-linear.
 - (ii) If W in part (i) is irreducible, prove that $\mu_r = \lambda I_W$ for some $\lambda \in \mathbb{C}$ where I_W is the identity map on W.

11. [12 points] Let \mathbb{L}_{-1} denote the 1-dimensional sign-representation of the symmetric group S_n and V the standard (n-1)-dimensional module for S_n . Prove that V and $V \otimes \mathbb{L}_{-1}$ are not isomorphic if n > 3.